# [OPE-L:3446] RE: Value of Money

Alan Freeman (A.Freeman@greenwich.ac.uk)
Wed, 16 Oct 1996 01:09:03 -0700 (PDT)

[ show plain text ]

------ =_NextPart_000_01BBBB3E.7AEA1BF0
Content-type: text/plain; charset="us-ascii"
Content-transfer-encoding: 7bit

My examples concerning the Okishio theorem --- the one in the book and the
earlier one in the RRPE --- assume a constant MEV or value of money. They do
not derive it from anything.

Isn't it strange that we end up resolving this here!
In equation (5) on p214 of our book, you say

v(t+1)Q(t) = v(t)A(t) + N(t)

I would say

v(t+1)K(t+1) = v(t)K(t) + N(t) - v(t)[W(t) + B(t)]
K(t+1) = K(t) - A(t) - W(t) - B(t) + Q(t)

where W is wages and B is bourgeois consumption both
in use-value terms.

What you seem to disagree with me about is this: I think that, in Marx's
theory, the total value of the product, in LABOR-TIME terms, is the value of
the consumed constant capital (circulating + depreciation of fixed) and the
new value added by living labor. You seem to say that the change in the
value of the economy's assets during the accounting period --- again in
labor-time terms --- is the value added by living labor. These two concepts

I'm still not 100ure that this is what you say, however. In any case, the
difference in our interpretations of Marx's theory does *not* concern the
relation between labor-time and money.

Andrew Kliman

------ =_NextPart_000_01BBBB3E.7AEA1BF0
Content-type: application/ms-tnef
Content-transfer-encoding: base64

AA8OAAAAAAIB/w8BAAAAXQAAAAAAAACBKx+kvqMQGZ1uAN0BD1QCAAAAAG9wZS1sQGFudGhyYXgu
ZWNzdC5jc3VjaGljby5lZHUAU01UUABvcGUtbEBhbnRocmF4LmVjc3QuY3N1Y2hpY28uZWR1AAAA
c3VjaGljby5lZHUnAAAAAgELMAEAAAAlAAAAU01UUDpPUEUtTEBBTlRIUkFYLkVDU1QuQ1NVQ0hJ
bHVlIG9mIE1vbmV5AAIBcQABAAAAFgAAAAG7uuJgkkF0+hsmrRHQl/gAgMgeQ+MAAB4AHgwBAAAA
AwAAHgAIEAEAAABlAAAATVlFWEFNUExFU0NPTkNFUk5JTkdUSEVPS0lTSElPVEhFT1JFTS0tLVRI
RU9ORUlOVEhFQk9PS0FORFRIRUVBUkxJRVJPTkVJTlRIRVJSUEUtLS1BU1NVTUVBQ09OU1RBTlRN
RQAAAAACAQkQAQAAAC8EAAArBAAAJgcAAExaRnXH2Xa5/wAKAQ8CFQKkA+QF6wKDAFATA1QCAGNo
CsBzZXTuMgYABsMCgzIDxgcTAoMGMwRGAgBwcnExIHcIVQeyAoM0A8UUsxIgVtUEkGQAcGECgzUW
PAawUHN0ZW0CgzYPemhEZWwDIERsZwKAfRcKgAjPCdk7G78yNTVPAoAKgQ2xC2BuZwHQNcI3CvRs
ogWwGQAgLSPwIqMCII8i0AuAIqMG4G9rIABw9mQiowqFZQrAH4AVcSR5UFJSUEUj42EEEHU/B4Al
YCHyGOAAcCEhRVY7JGAFwHYHQApQJGBmIIMEYCSAeS4gIFQaQO0hUGQjUAqFbiDgKwAGcd52JJEF
JZB1cCAbwHNtBvB2InQEACAaQBvAIcUu9UkDoGVxdTIQI0ARA6AoNSkkYSBwMhwxNCoCCGElEywg
eXMIYDFgYXku9S71KqB2wCh0KzEpUThgNXDSPThCKUE4wisHsDjB7TdcSTIwCGBsJZA3LzhFfks4
Yzj1PPE5liPgORNb6lc5dEI4wV03xjz3PcP/JBA5YyQQPvMkED9iOaE4sj03XHcz0kGQJKAEIHdh
9zHABCAlckJEEgbgCHAxwP5vM6EosihQBTA1EgbgIrBrJeYksXUR8C0ptBjwcrhtcy43XB8vID9X
MgLXNuMJ4CPQdCNQZAQARGD/CdEyMCxgRtAoYkVBMSEEIP0zgjoqoDrwLRIlUDHyNsDlJLFNCsB4
1QmAKKhjDGFwLGBRkShjaXL+YzswNPEigTmwDbAU0AWQxwcwNQMqEWZpeAmANXDPJX0kgAfgKbRh
ZA2wJZC+YiFQSdAzMwtgBuByKpH8IFlL+TtxMeRV4xHAMbKfJLUu9VHLBZErsG15UAH/KCESAAQg
UsAFECKFANAFoHZ1AjAicnAGcQRwJ9Rn7wtxJKIu9VyzLTUAKGFIM/8j41RsW79cxirBEfAioDsQ
9yH0BTBQF2csIkygDdAz4Z8pEQBxMkAR4EiNSScj0A8Y4AMQAyArsjEwMCX/MWAIcDHVM4NEIkun
O4A2wPxobzJALDBc8jSRLOFXMf8R8FEELvVqxiIwJKI2QguA/0gxWNEBkDUCBCAqEU/FUKTrKwEH