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Chapter 1

Introduction

What hansl is and what it is not

Hansl is a recursive acronym: it stands for “Hansl’s A Neat Scripting Language”. You might
therefore expect something very general in purpose. Not really. Hansl was born as the scripting
language for the econometrics program gretl and its role is unlikely to change. As a conse-
quence, hansl should not be viewed as a fully fledged programming language such as C, For-
tran, Perl or Python. Not because it lacks anything to be considered as such,1 but because its
aim is different. Hansl should be considered as a special-purpose or domain-specific language,
designed to make an econometrician’s life easier. Hence it incorporates a series of conventions
and choices that may irritate purists and have some marginal impact on raw performance, but
that we, as professional econometricians, consider “nice to have”. This makes hansl somewhat
different from plain matrix-oriented interpreted languages, such as the Matlab/Octave family,
Ox and so on.

On the other hand, hansl is by no means just a tool to automate rote tasks. It has several fea-
tures which support advanced work: structured programming, recursion, complex data struc-
tures, and so on. As for style, the language which hansl most resembles is probably that of the
bash shell.

The intent and structure of this document

The intended readers of this document are those who already know how to write code, and
are familiar with the associated do-s and don’t-s. Such people may wish to add hansl to their
toolbox, alongside languages like C or FORTRAN, or programs such as R, Ox, Matlab, Stata or
Gauss, some of which they are already confident with. Here, therefore, the focus is not so much
on “How do I do this?”, but rather on “How do I do this in hansl?”.

As a consequence, this document aims at making the reader a reasonably proficient hansl user
in a (relatively) short time; however, not all the features of hansl are illustrated; for those,
interested readers should consult the Gretl Command Reference and the Gretl User’s Guide.

This guide comprises two main parts. Part I (“Without a dataset”) concentrates on hansl as
a pure matrix-oriented programming language. Part II (“With a dataset”) exploits the fact that
hansl scripts are run through gretl, which has very nice facilities for handling statistical datasets
(interactively if necessary). This provides hansl with a series of extra constructs and features
which make it extremely easy to write hansl scripts to perform all sorts of statistical procedures.

In order to use hansl, you will need a working installation of gretl. We assume you have one. If
you don’t, please refer to chapter 1 of the Gretl User’s Guide.

Other resources

If you are serious about learning hansl then after working through this primer—or in the pro-
cess of doing so—you’ll want to take a look at the following additional resources.

• The Gretl Command Reference. This contains a complete listing of the commands and
built-in functions available in hansl, with a full account of their syntax and options. Exam-
ples of usage are provided in some instances. This is available in an “online” version for
handy reference as well as in PDF, both accessible via the Help menu in the gretl GUI.

1Hansl is in fact Turing-complete.
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Chapter 1. Introduction 2

• The Gretl User’s Guide. Chapters 10 to 16, in particular, go into more detail on some
of the programming topics discussed here (data types, loops, the definition and use of
functions). In addition Part II of the Guide, on Econometric Methods, gives many examples
of hansl usage. The Guide is available via gretl’s Help menu; the latest version can also be
found online at http://sourceforge.net/projects/gretl/files/manual/.

• Sample scripts. The gretl package comes with a large number of sample or practice scripts,
which can be found under the menu item /File/Script files/Example scripts. Many of these
are simple replication exercises for textbook problems but you will find some more inter-
esting examples under the Gretl tab.

• Function packages. Relatively ambitious examples of hansl coding can be found in the
various contributed “function packages”. You can download these packages via the gretl
menu item /Tools/Function packages/On server. Once a package is downloaded it appears
in the listing under /Tools/Function packages/On local machine; in that context you can
right-click and select View code to examine the hansl functions.

• The gretl-users mailing list. Most well-considered questions get answered quite quickly
and fully. See https://gretlml.univpm.it/postorius/lists/.

http://sourceforge.net/projects/gretl/files/manual/
https://gretlml.univpm.it/postorius/lists/


Chapter 2

For the impatient

OK, so you’re impatient. Then perhaps you’re thinking “Do I really need to go through the whole
thing? After all, I’ve been coding econometric stuff for a while, and I’m pretty confident I can
pick a new scripting language if it’s not too obscure. I just need a few tips to get me started”.
If that’s not what you’re thinking at all, we suggest you move along to chapter 3; but if it is,
well then, we’ll give you a hansl script which exemplifies a hefty share of the topics discussed
in the rest of this primer. We will use for our example a Vector AutoRegressive model, or VAR
for short.

As you probably know, a finite-order VAR can be estimated via conditional maximum likelihood
simply by applying OLS to each equation individually. That amounts to solving a least-squares
problem and its solution can be easily written, in matrix notation, as Π̂ = (X′X)−1X′Y , where
Y contains your endogenous variables and X contains their lags plus other exogenous terms
(typically, a constant term at least). But of course, you may choose to find the maximum of the
concentrated likelihood L = −(T/2) ln |Σ̂| numerically if you so wish.

The following example contains a hansl script which performs these actions:

1. Reads data from a disk file.

2. Performs some data transformation and simple visualization.

3. Estimates the VAR via

(a) the native hansl var command

(b) sequential single-equation OLS

(c) matrix algebra (in 3 different ways)

(d) numerical maximization of the log-likelihood.

4. Prints out the results.

The script also contains some concise comments.

open AWM.gdt --quiet # load data from disk

/* data transformations and visualisation */

series y = 100 * hpfilt(ln(YER)) # the "series" concept: operate on
series u = 100 * URX # vectors on an element-by-element basis
series r = STN - 100*sdiff(ln(HICP)) # (but you also have special functions)

scatters y r u --output=display # command example with an option: graph data

/* in-house VAR */

scalar p = 2 # strong typing: a scalar is not a
# matrix nor a series

var p y r u # estimation command
A = $coeff # and corresponding accessor

3
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/* by iterated OLS */

list X = y r u # the list is yet another variable type

matrix B = {} # initialize an empty matrix

loop foreach i X # loop over the 3 var equations
ols $i const X(-1 to -p) --quiet # using native OLS command
B ~= $coeff # and store the estimated coefficients

endloop # as matrix columns

/* via matrices */

matrix mY = { y, r, u } # construct a matrix from series
matrix mX = 1 ~ mlag(mY, {1,2}) # or from matrix operators/functions
mY = mY[p+1:,] # and select the appropriate rows
mX = mX[p+1:,] # via "range" syntax

C1 = mX\mY # matlab-style matrix inversion
C2 = mols(mY, mX) # or native function
C3 = inv(mX’mX) * (mX’mY) # or algebraic primitives

/* or the hard, needlessly complicated way --- just to show off */

function scalar loglik(matrix param, const matrix X, const matrix Y)

# this function computes the concentrated log-likelihood
# for an unrestricted multivariate regression model

scalar n = cols(Y)
scalar k = cols(X)
scalar T = rows(Y)
matrix C = mshape(param, k, n)
matrix E = Y - X*C
matrix Sigma = E’E

return -T/2 * ln(det(Sigma))
end function

matrix c = zeros(21,1) # initialize the parameters
mle ll = loglik(c, mX, mY) # and maximize the log-likelihood

params c # via BFGS, printing out the
end mle # results when done

D = mshape(c, 7, 3) # reshape the results for conformability

/* print out the results */

# note: row ordering between alternatives is different

print A B C1 C2 C3 D

If you were able to follow the script above in all its parts, congratulations. You probably don’t
need to read the rest of this document (though we don’t mind if you do). But if you find the
script too scary, never fear: we’ll take things step by step. Read on.



Part I

Without a dataset
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Chapter 3

Hello, world!

We begin with the time-honored “Hello, world” program, the obligatory first step in any pro-
gramming language. It’s actually very simple in hansl:

# First example
print "Hello, world!"

There are several ways to run the above example: you can put it in a text file first_ex.inp
and have gretl execute it from the command line through the command

gretlcli -b first_ex.inp

or you could just copy its contents in the editor window of a GUI gretl session and click on the
“gears” icon. It’s up to you; use whatever you like best.

From a syntactical point of view, allow us to draw attention on the following points:

1. The line that begins with a hash mark (#) is a comment: if a hash mark is encountered,
everything from that point to the end of the current line is treated as a comment, and
ignored by the interpreter.

2. The next line contains a command (print) followed by an argument; this is fairly typical
of hansl: many jobs are carried out by calling commands.

3. Hansl does not have an explicit command terminator such as the “;” character in the C
language family (C++, Java, C#, . . . ) or GAUSS; instead it uses the newline character as an
implicit terminator. So at the end of a command, you must insert a newline; conversely,
you can’t put a newline in the middle of a command—or not without taking special mea-
sures. If you need to break a command over more than one line for the sake of legibility
you can use the “\” (backslash) character, which causes gretl to ignore the following line
break.

Note also that the print command automatically appends a line break, and does not recog-
nize “escape” sequences such as “\n”; such sequences are just printed literally. The printf
command can be used for greater control over output; see chapter 5.

Let’s now examine a simple variant of the above:

/*
Second example

*/
string foo = "Hello, world"
print foo

In this example, the comment is written using the convention adopted in the C programming
language: everything between “/*” and “*/” is ignored.1 Comments of this type cannot be
nested.

Then we have the line
1Each type of comment can be masked by the other:

• If /* follows # on a given line which does not already start in ignore mode, then there’s nothing special about
/*, it’s just part of a #-style comment.

• If # occurs when we’re already in comment mode, it is just part of a comment.

6
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string foo = "Hello, world"

In this line, we assign the value “Hello, world” to the variable named foo. Note that

1. The assignment operator is the equals sign (=).

2. The name of the variable (its identifier) must follow the following convention: identifiers
can be at most 31 characters long and must be plain ASCII. They must start with a letter,
and can contain only letters, numbers and the underscore character.2 Identifiers in hansl
are case-sensitive, so foo, Foo and FOO are three distinct names. Of course, some words
are reserved and can’t be used as identifiers (however, nearly all reserved words only
contain lowercase characters).

3. The string delimiter is the double quote (").

In hansl, a variable has to be of one of these types: scalar, series, matrix, list, string,
bundle or array. As we’ve just seen, string variables are used to hold sequences of alphanu-
meric characters. We’ll introduce the other ones gradually; for example, the matrix type will
be the object of the next chapter.

The reader may have noticed that the line

string foo = "Hello, world"

implicitly performs two tasks: it declares foo as a variable of type string and, at the same
time, assigns a value to foo. The declaration component is not strictly required. In most cases
gretl is able to figure out by itself what type a newly introduced variable should have, and the
line foo = "Hello, world" (without a type specifier) would have worked just fine. However,
it is more elegant (and leads to more legible and maintainable code) to use a type specifier at
least the first time you introduce a variable.

In the next example, we will use a variable of the scalar type:

scalar x = 42
print x

A scalar is a double-precision floating point number, so 42 is the same as 42.0 or 4.20000E+01.
Note that hansl doesn’t have a separate variable type for integers or complex numbers.

An important detail to note is that, contrary to most other matrix-oriented languages in use in
the econometrics community, hansl is strongly typed. That is, you cannot assign a value of one
type to a variable that has already been declared as having a different type. For example, this
will return an error:

string a = "zoo"
a = 3.14 # no, no, no!

If you try running the example above, an error will be flagged. However, it is acceptable to
destroy the original variable, via the delete command, and then re-declare it, as in

scalar X = 3.1415
delete X
string X = "apple pie"

There is no “type-casting” as in C, but some automatic type conversions are possible (more on
this later).

Many commands can take more than one argument, as in

2Actually one exception to this rule is supported: identifiers taking the form of a single Greek letter. See chapter 15
for details.
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set echo off
set messages off

scalar x = 42
string foo = "not bad"
print x foo

In this example, one print is used to print the values of two variables; more generally, print
can be followed by as many arguments as desired. The other difference with respect to the
previous code examples is in the use of the two set commands. Describing the set command
in detail would lead us to an overly long diversion; suffice it to say that this command is used
to set the values of various “state variables” that influence the behavior of the program; here
it is used as a way to silence unwanted output. See the Gretl Command Reference for more on
set.

The eval command is useful when you want to look at the result of an expression without
assigning it to a variable; for example

eval 2+3*4

will print the number 14. This is most useful when running gretl interactively, like a calculator,
but it is usable in a hansl script for checking purposes, as in the following (rather silly) example:

scalar a = 1
scalar b = -1
# this ought to be 0
eval a+b

3.1 Manipulation of scalars

Algebraic operations work in the obvious way, with the classic algebraic operators having their
traditional precedence rules: the caret (^) is used for exponentiation. For example,

scalar phi = exp(-0.5 * (x-m)^2 / s2) / sqrt(2 * $pi * s2)

in which we assume that x, m and s2 are pre-existing scalars. The example above contains two
noteworthy points:

• The usage of the exp (exponential) and sqrt (square root) functions; it goes without say-
ing that hansl possesses a reasonably wide repertoire of such functions. See the Gretl
Command Reference for the complete list.

• The usage of $pi for the constant π . While user-specified identifiers must begin with a let-
ter, built-in identifiers for internal objects typically have a “dollar” prefix; these are known
as accessors (basically, read-only variables). Most accessors are defined in the context of
an open dataset (see part II), but some represent pre-defined constants, such as π . Again,
see the Gretl Command Reference for a comprehensive list.

Hansl does not possess a specific Boolean type, but scalars can be used for holding true/false
values. It follows that you can also use the logical operators and (&&), or (||), and not (!) with
scalars, as in the following example:

a = 1
b = 0
c = !(a && b)

In the example above, c will equal 1 (true), since (a && b) is false, and the exclamation mark
is the negation operator. Note that 0 evaluates to false, and anything else (not necessarily 1)
evaluates to true.

A few constructs are taken from the C language family: one is the postfix increment operator:
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a = 5
b = a++
print a b

the second line is equivalent to b = a, followed by a++, which in turn is shorthand for a = a+1,
so running the code above will result in b containing 5 and a containing 6. Postfix subtraction is
also supported; prefix operators, however, are not supported. Another C borrowing is inflected
assignment, as in a += b, which is equivalent to a = a + b; several other similar operators are
available, such as -=, *= and more. See the Gretl Command Reference for details.

The internal representation for a missing value is NaN (“not a number”), as defined by the
IEEE 754 floating point standard. This is what you get if you try to compute quantities like
the square root or the logarithm of a negative number. You can also set a value to “missing”
directly using the keyword NA. The complementary functions missing and ok can be used to
determine whether a scalar is NA. In the following example a value of zero is assigned to the
variable named test:

scalar not_really = NA
scalar test = ok(not_really)

Note that you cannot test for equality to NA, as in

if x == NA ... # wrong!

because a missing value is taken as indeterminate and hence not equal to anything. This last
example, despite being wrong, illustrates a point worth noting: the test-for-equality operator in
hansl is the double equals sign, “==” (as opposed to plain “=” which indicates assignment).

3.2 Manipulation of strings

Most of the previous section applies, with obvious modifications, to strings: you may manip-
ulate strings via operators and/or functions. Hansl’s repertoire of functions for manipulating
strings offers all the standard capabilities one would expect, such as toupper, tolower, strlen,
etc., plus some more specialized ones. Again, see the Gretl Command Reference for a complete
list.

In order to access part of a string, you may use the substr function,3 as in

string s = "endogenous"
string pet = substr(s, 3, 5)

which would result to assigning the value dog to the variable pet.

The following are useful operators for strings:

• the ~ operator, to join two or more strings, as in4

string s1 = "sweet"
string s2 = "Home, " ~ s1 ~ " home."

• the closely related ~= operator, which acts as an inflected assignment operator (so a ~= "_ij"
is equivalent to a = a ~ "_ij");

• the offset operator +, which yields a substring of the preceding element, starting at the
given character offset. An empty string is returned if the offset is greater than the length
of the string in question.

3Actually, there is a cooler method, which uses the same syntax as matrix slicing (see chapter 4): substr(s, 3,
5) is functionally equivalent to s[3:5].

4On some national keyboards, you don’t have the tilde (˜) character. In gretl’s script editor, this can be obtained
via its Unicode representation: type Ctrl-Shift-U, followed by 7e.
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A noteworthy point: strings may be (almost) arbitrarily long; moreover, they can contain special
characters such as line breaks and tabs. It is therefore possible to use hansl for performing
rather complex operations on text files by loading them into memory as a very long string and
then operating on that; interested readers should take a look at the readfile, getline, strsub
and regsub functions in the Gretl Command Reference.5

For creating complex strings, the most flexible tool is the sprintf function. Its usage is illus-
trated in Chapter 5.

5We are not claiming that hansl would be the tool of choice for text processing in general. Nonetheless the
functions mentioned here can be very useful for tasks such as pre-processing plain text data files that do not meet
the requirements for direct importation into gretl.



Chapter 4

Matrices

Matrices are one- or two-dimensional arrays of double-precision floating-point numbers. Hansl
users who are accustomed to other matrix languages should note that multi-index objects are
not supported. Matrices have rows and columns, and that’s it.

4.1 Matrix indexing

Individual matrix elements are accessed through the [r,c] syntax, where indexing starts at 1.
For example, X[3,4] indicates the element of X on the third row, fourth column. For example,

matrix X = zeros(2,3)
X[2,1] = 4
print X

produces

X (2 x 3)

0 0 0
4 0 0

Here are some more advanced ways to access matrix elements:

1. In case the matrix has only one row (column), the column (row) specification can be omit-
ted, as in x[3].

2. Including the comma but omitting the row or column specification means “take them all”,
as in x[4,] (fourth row, all columns).

3. For square matrices, the special syntax x[diag] can be used to access the diagonal.

4. Consecutive rows or columns can be specified via the colon (:) character, as in x[,2:4]
(columns 2 to 4). But note that, unlike some other matrix languages, the syntax [m:n] is
illegal if m > n.

5. It is possible to use a vector to hold indices to a matrix. E.g. if e = [2,3,6], then X[,e]
contains the second, third and sixth columns of X.

Moreover, matrices can be empty (zero rows and columns).

In the example above, the matrix X was constructed using the function zeros(), whose meaning
should be obvious, but matrix elements can also be specified directly, as in

scalar a = 2*3
matrix A = { 1, 2, 3 ; 4, 5, a }

The matrix is defined by rows; the elements on each row are separated by commas and rows
are separated by semicolons. The whole expression must be wrapped in braces. Spaces within
the braces are not significant. The above expression defines a 2× 3 matrix.

Note that each element should be a numerical value, the name of a scalar variable, or an ex-
pression that evaluates to a scalar. In the example above the scalar a was first assigned a value
and then used in matrix construction. (Also note, in passing, that a and A are two separate
identifiers, due to case-sensitivity.)

11
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4.2 Matrix operations

Matrix sum, difference and product are obtained via +, - and *, respectively. The prime operator
(’) can act as a unary operator, in which case it transposes the preceding matrix, or as a binary
operator, in which case it acts as in ordinary matrix algebra, multiplying the transpose of the
first matrix into the second one.1 Errors are flagged if conformability is a problem. For example:

matrix a = {11, 22 ; 33, 44} # a is square 2 x 2
matrix b = {1,2,3; 3,2,1} # b is 2 x 3

matrix c = a’ # c is the transpose of a
matrix d = a*b # d is a 2x3 matrix equal to a times b

matrix gina = b’d # valid: gina is 3x3
matrix lina = d + b # valid: lina is 2x3

/* -- these would generate errors if uncommented ----- */

# pina = a + b # sum non-conformability
# rina = d * b # product non-conformability

Other noteworthy matrix operators include ˆ (matrix power), ** (Kronecker product), and the
“concatenation” operators, ~ (horizontal) and | (vertical). Readers are invited to try them out
by running the following code

matrix A = {2,1;0,1}
matrix B = {1,1;1,0}

matrix KP = A ** B
matrix PWR = A^3
matrix HC = A ~ B
matrix VC = A | B

print A B KP PWR HC VC

Note, in particular, that A3 = A · A · A, which is different from what you get by computing the
cubes of each element of A separately.

Hansl also supports matrix left- and right-“division”, via the \ and / operators, respectively. The
expression A\b solves Ax = b for the unknown x. A is assumed to be anm×nmatrix with full
column rank. If A is square the method is LU decomposition. If m > n the QR decomposition
is used to find the least squares solution. In most cases, this is numerically more robust and
more efficient than inverting A explicitly.

Element-by-element operations are supported by the so-called “dot” operators, which are ob-
tained by putting a dot (“.”) before the corresponding operator. For example, the code

A = {1,2; 3,4}
B = {-1,0; 1,-1}
eval A * B
eval A .* B

produces

1 -2
1 -4

-1 0
3 -4

1In fact, in this case an optimized algorithm is used; you should always use a’a instead of a’*a for maximal
precision and performance.
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It’s easy to verify that the first operation performed is regular matrix multiplication A · B,
whereas the second one is the Hadamard (element-by-element) product A � B. In fact, dot
operators are more general and powerful than shown in the example above; see the chapter on
matrices in the Gretl User’s Guide for details.

Dot and concatenation operators are less rigid than ordinary matrix operations in terms of con-
formability requirements: in most cases hansl will try to do “the obvious thing”. For example,
a common idiom in hansl is Y = X ./ w, where X is an n× k matrix and w is an n× 1 vector.
The result Y is an n×k matrix in which each row of X is divided by the corresponding element
of w. In proper matrix notation, this operation should be written as

Y = 〈w〉−1X,

where the 〈·〉 indicates a diagonal matrix. Translating literally the above expression would
imply creating a diagonal matrix out of w and then inverting it, which is computationally much
more expensive than using the dot operation. A detailed discussion is provided in the Gretl
User’s Guide.

Hansl provides a reasonably comprehensive set of matrix functions, that is, functions that
produce and/or operate on matrices. For a full list, see the Gretl Command Reference, but
a basic “survival kit” is provided in Table 4.1. Moreover, most scalar functions, such as abs(),
log() etc., will operate on a matrix element-by-element.

Function(s) Purpose

rows(X), cols(X) return the number of rows and columns of X, respectively

zeros(r,c), ones(r,c) produce matrices with r rows and c columns, filled with zeros
and ones, respectively

mshape(X,r,c) rearrange the elements of X into a matrix with r rows and c
columns

I(n) identity matrix of size n
seq(a,b) generate a row vector containing integers from a to b
inv(A) invert, if possible, the matrix A

maxc(A), minc(A), meanc(A) return a row vector with the max, min, means of each column
of A, respectively

maxr(A), minr(A), meanr(A) return a column vector with the max, min, means of each row
of A, respectively

mnormal(r,c), muniform(r,c) generate r × c matrices filled with standard Gaussian and uni-
form pseudo-random numbers, respectively

Table 4.1: Essential set of hansl matrix functions

The following piece of code is meant to provide a concise example of all the features mentioned
above.

# example: OLS using matrices

# fix the sample size
scalar T = 256

# construct vector of coefficients by direct imputation
matrix beta = {1.5, 2.5, -0.5} # note: row vector

# construct the matrix of independent variables
matrix Z = mnormal(T, cols(beta)) # built-in functions

# now construct the dependent variable: note the
# usage of the "dot" and transpose operators

matrix y = {1.2} .+ Z*beta’ + mnormal(T, 1)

# now do estimation
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matrix X = 1 ~ Z # concatenation operator
matrix beta_hat1 = inv(X’X) * (X’y) # OLS by hand
matrix beta_hat2 = mols(y, X) # via the built-in function
matrix beta_hat3 = X\y # via matrix division

print beta_hat1 beta_hat2 beta_hat3

4.3 Matrix pointers

Hansl uses the “by value” convention for passing parameters to functions. That is, when a
variable is passed to a function as an argument, what the function actually gets is a copy of
the variable, which means that the value of the variable at the caller level is not modified by
anything that goes on inside the function. But the use of pointers allows a function and its
caller to cooperate such that an outer variable can be modified by the function.

This mechanism is used by some built-in matrix functions to provide more than one “return”
value. The primary result is always provided by the return value proper but certain auxiliary
values may be retrieved via “pointerized” arguments; this usage is flagged by prepending the
ampersand symbol, “&”, to the name of the argument variable.

The eigensym function, which performs the eigen-analysis of symmetric matrices, is a case in
point. In the example below the first argument A represents the input data, that is, the matrix
whose analysis is required. This variable will not be modified in any way by the function call.
The primary result is the vector of eigenvalues of A, which is here assigned to the variable ev.
The (optional) second argument, &V (which may be read as “the address of V”), is used to retrieve
the right eigenvectors of A. A variable named in this way must be already declared, but it need
not be of the right dimensions to receive the result; it will be resized as needed.

matrix A = {1,2 ; 2,5}
matrix V
matrix ev = eigensym(A, &V)
print A ev V
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Nice-looking output

5.1 Formatted output

A common occurrence when you’re writing a script—particularly when you intend for the script
to be used by others, and you’d like the output to be reasonably self-explanatory—is that you
want to output something along the following lines:

The coefficient on X is Y, with standard error Z

where X, Y and Z are placeholders for values not known at the time of writing the script; they
will be filled out as the values of variables or expressions when the script is run. Let’s say that
at run time the replacements in the sentence above should come from variables named vname
(a string), b (a scalar value) and se (also a scalar value), respectively.

Across the spectrum of programming languages there are basically two ways of arranging for
this. One way originates in the C language and goes under the name printf. In this approach
we (a) replace the generic placeholders X, Y and Z with more informative conversion specifiers,
and (b) append the variables (or expressions) that are to be stuck into the text, in order. Here’s
the hansl version:

printf "The coefficient on %s is %g, with standard error %g\n", vname, b, se

The value of vname replaces the conversion specifier “%s,” and the values of b and se replace
the two “%g” specifiers, left to right. In relation to hansl, here are the basic points you need to
know: “%s” pairs with a string argument, and “%g” pairs with a numeric argument.

The C-derived printf (either in the form of a function, or in the form of a command as shown
above) is present in most “serious” programming languages. It is extremely versatile, and in its
advanced forms affords the programmer fine control over the output.

In some scripting languages, however, printf is reckoned “too difficult” for non-specialist
users. In that case some sort of substitute is typically offered. We’re skeptical: “simplified”
alternatives to printf can be quite confusing, and if at some point you want fine control over
the output, they either do not support it, or support it only via some convoluted mechanism. A
typical alternative looks something like this (please note, display is not a hansl command, it’s
just illustrative):

display "The coefficient on ", vname, "is ", b, ", with standard error ", se, "\n"

That is, you break the string into pieces and intersperse the names of the variables to be printed.
The requirement to provide conversion specifiers is replaced by a default automatic formatting
of the variables based on their type. By the same token, the command line becomes peppered
with mutiple commas and quotation marks. If this looks preferable to you, you are welcome to
join one of the gretl mailing lists and argue for its provision!

Anyway, to be a bit more precise about printf, its syntax goes like this:

printf format, arguments

The format is used to specify the precise way in which you want the arguments to be printed.

15
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The format string

In the general case the printf format must be an expression that evaluates to a string, but in
most cases will just be a string literal (an alphanumeric sequence surrounded by double quotes).
However, some character sequences in the format have a special meaning. As illustrated above,
those beginning with a percent sign (%) are interpreted as placeholders for the items contained
in the argument list. In addition, special characters such as the newline character are repre-
sented via a combination beginning with a backslash (\).

For example,

printf "The square root of %d is (roughly) %6.4f.\n", 5, sqrt(5)

will print

The square root of 5 is (roughly) 2.2361.

Let’s see how:

• The first special sequence is %d: this indicates that we want an integer at that place in the
output; since it is the leftmost “percent” expression, it is matched to the first argument,
that is 5.

• The second special sequence is %6.4f, which stands for a decimal value with 4 digits af-
ter the decimal separator1 and at least 6 digits wide; this will be matched to the second
argument. Note that arguments are separated by commas. Also note that the second ar-
gument is neither a scalar constant nor a scalar variable, but an expression that evaluates
to a scalar.

• The format string ends with the sequence \n, which inserts a newline.

The conversion specifiers in the square-root example are relatively fancy, but as we noted earlier
%g will work fine for almost all numerical values in hansl. So we could have used the simpler
form:

printf "The square root of %g is (roughly) %g.\n", 5, sqrt(5)

The effect of %g is to print a number using up to 6 significant digits (but dropping trailing
zeros); it automatically switches to scientific notation if the number is very large or very small.
So the result here is

The square root of 5 is (roughly) 2.23607.

The escape sequences \n (newline), \t (tab), \v (vertical tab) and \\ (literal backslash) are
recognized. To print a literal percent sign, use %%.

Apart from those shown in the above example, recognized numeric formats are %e, %E, %f, %g,
%G and %x, in each case with the various modifiers available in C. The format %s should be used
for strings. As in C, numerical values that form part of the format (width and or precision) may
be given directly as numbers, as in %10.4f, or they may be given as variables. In the latter case,
one puts asterisks into the format string and supplies corresponding arguments in order. For
example,

scalar width = 12
scalar precision = 6
printf "x = %*.*f\n", width, precision, x

If a matrix argument is given in association with a numeric format, the entire matrix is printed
using the specified format for each element. A few more examples are given in table 5.1.

1The decimal separator is the dot in English, but may be different in other locales.
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Command effect

printf "%12.3f", $pi 3.142

printf "%12.7f", $pi 3.1415927

printf "%6s%12.5f%12.5f %d\n", "alpha",

3.5, 9.1, 3 alpha 3.50000 9.10000 3

printf "%6s%12.5f%12.5f\t%d\n", "beta",

1.2345, 1123.432, %11 beta 1.23450 1123.43200 11

printf "%d, %10d, %04d\n", 1,2,3 1, 2, 0003

printf "%6.0f (%5.2f%%)\n", 32, 11.232 32 (11.23%)

Table 5.1: Print format examples

Output to a string

A closely related effect can be achieved via the sprintf function: instead of being printed
directly the result is stored in a named string variable, as in

string G = sprintf("x = %*.*f\n", width, precision, x)

after which the variable G can be the object of further processing.

Output to a file

Hansl does not have a file or “stream” type as such, but the outfile command can be used
to divert output to a named text file. To start such redirection you must give the name of a
file; by default a new file is created or an existing one overwritten but the --append can be
used to append material to an existing file. Only one file can be opened in this way at any
given time. The redirection of output continues until the command end outfile is given; then
output reverts to the default stream.

Here’s an example of usage:

printf "One!\n"
outfile "myfile.txt"
printf "Two!\n"

end outfile
printf "Three!\n"
outfile "myfile.txt" --append
printf "Four!\n"

end outfile
printf "Five!\n"

After execution of the above the file myfile.txt will contain the lines

Two!
Four!

Three special variants on the above are available. If you give the keyword null in place of a real
filename along with the write option, the effect is to suppress all printed output until redirection
is ended. If either of the keywords stdout or stderr are given in place of a regular filename
the effect is to redirect output to standard output or standard error output, respectively.

This command also supports a --quiet option: its effect is to turn off the echoing of commands
and the printing of auxiliary messages while output is redirected. It is equivalent to doing

set echo off
set messages off

before invoking outfile, except that when redirection is ended the prior values of the echo
and messages state variables are restored.
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5.2 Graphics

The primary graphing command in hansl is gnuplot which, as the name suggests, in fact pro-
vides an interface to the gnuplot program. It is used for plotting series in a dataset (see part II)
or columns in a matrix. For an account of this command (and some other more specialized
ones, such as boxplot and qqplot), see the Gretl Command Reference.
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Structured data types

Hansl possesses two kinds of “structured data type”: associative arrays, called bundles and
arrays in the proper sense of the word. Loosely speaking, the main difference between the two
is that in a bundle you can pack together variables of different types, while arrays can hold one
type of variable only.

6.1 Bundles

Bundles are associative arrays, that is, generic containers for any assortment of hansl types
(including other bundles) in which each element is identified by a string. Python users call
these dictionaries; in C++ and Java, they are referred to as maps; they are known as hashes in
Perl. We call them bundles. Each item placed in the bundle is associated with a key which can
used to retrieve it subsequently.

To use a bundle you first either “declare” it, as in

bundle foo

or define an empty bundle using the null keyword:

bundle foo = null

These two formulations are basically equivalent, in that they both create an empty bundle. The
difference is that the second variant may be reused—if a bundle named foo already exists the
effect is to empty it—while the first may only be used once in a given gretl session; it is an error
to declare a variable that already exists.

To add an object to a bundle you assign to a compound left-hand value: the name of the bundle
followed by the key. The most common way to do this is to join the key to the bundle name
with a dot, as in

foo.matrix1 = m

which adds an object called m (presumably a matrix) to bundle foo under the key matrix1. The
key must satisfy the rules for a gretl variable name (31 characters maximum, starting with a
letter and composed of just letters, numbers or underscore)

An alternative way to achieve the same effect is to give the key as a quoted string literal enclosed
in square brackets, as in

foo["matrix1"] = m

When using the more elaborate syntax, keys do not have to be valid as variable names—for
example, they can include spaces—but they are still limited to 31 characters.

To get an item out of a bundle, again use the name of the bundle followed by the key, as in

matrix bm = foo.matrix1
# or using the long-hand notation
matrix m = foo["matrix1"]

19
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Note that the key identifying an object within a given bundle is necessarily unique. If you reuse
an existing key in a new assignment, the effect is to replace the object which was previously
stored under the given key. It is not required that the type of the replacement object is the
same as that of the original.

A quicker way, introduced in gretl 2017b, is to use the defbundle function, as in

bundle b = defbundle("s", "Sample string", "m", I(3))

in which every odd-numbered argument must evaluate to a string (key) and every even-numbered
argument must evaluate to an object of a type that can be included in a bundle.

Note that when you add an object to a bundle, what in fact happens is that the bundle acquires a
copy of the object. The external object retains its own identity and is unaffected if the bundled
object is replaced by another. Consider the following script fragment:

bundle foo
matrix m = I(3)
foo.mykey = m
scalar x = 20
foo.mykey = x

After the above commands are completed bundle foo does not contain a matrix under mykey,
but the original matrix m is still in good health.

To delete an object from a bundle use the delete command, with the bundle/key combination,
as in

delete foo.mykey
delete foo["quoted key"]

This destroys the object associated with the key and removes the key from the hash table.1

Besides adding, accessing, replacing and deleting individual items, the other operations that
are supported for bundles are union and printing. As regards union, if bundles b1 and b2 are
defined you can say

bundle b3 = b1 + b2

to create a new bundle that is the union of the two others. The algorithm is: create a new bundle
that is a copy of b1, then add any items from b2 whose keys are not already present in the new
bundle. (This means that bundle union is not necessarily commutative if the bundles have one
or more key strings in common.)

If b is a bundle and you say print b, you get a listing of the bundle’s keys along with the types
of the corresponding objects, as in

? print b
bundle b:
x (scalar)
mat (matrix)
inside (bundle)

Bundle usage

To illustrate the way a bundle can hold information, we will use the Ordinary Least Squares
(OLS) model as an example: the following code estimates an OLS regression and stores all the
results in a bundle.

1Internally, gretl bundles in fact take the form of GLib hash table.
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/* assume y and X are given T x 1 and T x k matrices */

bundle my_model = null # initialization
my_model.T = rows(X) # sample size
my_model.k = cols(X) # number of regressors
matrix e # will hold the residuals
b = mols(y, X, &e) # perform OLS via native function
s2 = meanc(e.^2) # compute variance estimator
matrix V = s2 .* invpd(X’X) # compute covariance matrix

/* now store estimated quantities into the bundle */

my_model.betahat = b
my_model.s2 = s2
my_model.vcv = V
my_model.stderr = sqrt(diag(V))

The bundle so obtained is a container that can be used for all sort of purposes. For example,
the next code snippet illustrates how to use a bundle with the same structure as the one created
above to perform an out-of sample forecast. Imagine that k = 4 and the value of x for which we
want to forecast y is

x′ = [10 1 − 3 0.5]

The formulae for the forecast would then be

ŷf = x′β̂

sf =
√
σ̂ 2 + x′V(β̂)x

CI = ŷf ± 1.96sf

where CI is the (approximate) 95 percent confidence interval. The above formulae translate into

x = { 10, 1, -3, 0.5 }
scalar ypred = x * my_model.betahat
scalar varpred = my_model.s2 + qform(x, my_model.vcv)
scalar sepred = sqrt(varpred)
matrix CI_95 = ypred + {-1, 1} .* (1.96*sepred)
print ypred CI_95

6.2 Arrays

A gretl array is a container which can hold zero or more objects of a certain type, indexed by
consecutive integers starting at 1. It is one-dimensional. This type is implemented by a quite
“generic” back-end. The types of object that can be put into arrays are strings, matrices, bundles
and lists; a given array can hold only one of these types.

Array operations

The following is, we believe, rather self-explanatory:

strings S1 = array(3)
matrices M = array(4)
strings S2 = defarray("fish", "chips")
S1[1] = ":)"
S1[3] = ":("
M[2] = mnormal(2,2)
print S1
eval inv(M[2])
S = S1 + S2
print S
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The array() takes an integer argument for the array size; the defarray() function takes a
variable number of arguments (one or more), each of which may be the name of a variable of
the given type or an expression which evaluates to an object of that type. The corresponding
output is

Array of strings, length 3
[1] ":)"
[2] null
[3] ":("

0.52696 0.28883
-0.15332 -0.68140

Array of strings, length 5
[1] ":)"
[2] null
[3] ":("
[4] "fish"
[5] "chips"

In order to find the number of elements in an array, you can use the nelem() function.
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Numerical methods

7.1 Numerical optimization

Many, if not most, cases in which an econometrician wants to use a programming language
such as hansl, rather than relying on pre-canned routines, involve some form of numerical
optimization. This could take the form of maximization of a likelihood or similar methods of
inferential statistics. Alternatively, optimization could be used in a more general and abstract
way, for example to solve portfolio choice or analogous resource allocation problems.

Since hansl is Turing-complete, in principle any numerical optimization technique could be
programmed in hansl itself. Some such techniques, however, are included in hansl’s set of
native functions, in the interest of both simplicity of use and efficiency. These are geared
towards the most common kind of problem encountered in economics and econometrics, that
is unconstrained optimization of differentiable functions.

In this chapter, we will briefly review what hansl offers to solve generic problems of the kind

x̂ ≡ Argmax
x∈<k

f(x; a),

where f(x; a) is a function of x, whose shape depends on a vector of parameters a. The objective
function f(·) is assumed to return a scalar real value. In most cases, it will be assumed it is also
continuous and differentiable, although this need not necessarily be the case. (Note that while
hansl’s built-in functions maximize the given objective function, minimization can be achieved
simply by flipping the sign of f(·).)
A special case of the above occurs when x is a vector of parameters and a represents “data”.
In these cases, the objective function is usually a (log-)likelihood and the problem is one of
estimation. For such cases hansl offers several special constructs, reviewed in section 12.2. Here
we deal with more generic problems; nevertheless, the differences are only in the hansl syntax
involved: the mathematical algorithms that gretl employs to solve the optimization problem
are the same.

The reader is invited to read the “Numerical methods” chapter of the Gretl User’s Guide for a
comprehensive treatment. Here, we will only give a small example which should give an idea of
how things are done.

function scalar Himmelblau(matrix x)
/* extrema:
f(3.0, 2.0) = 0.0,
f(-2.805118, 3.131312) = 0.0,
f(-3.779310, -3.283186) = 0.0
f(3.584428, -1.848126) = 0.0
*/
scalar ret = (x[1]^2 + x[2] - 11)^2
return -(ret + (x[1] + x[2]^2 - 7)^2)

end function

# ----------------------------------------------------------------------

set max_verbose 1

matrix theta1 = { 0, 0 }
y1 = BFGSmax(theta1, "Himmelblau(theta1)")
matrix theta2 = { 0, -1 }

23
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y2 = NRmax(theta2, "Himmelblau(theta2)")

print y1 y2 theta1 theta2

We use for illustration here a classic “nasty” function from the numerical optimization litera-
ture, namely the Himmelblau function, which has four different minima; f(x,y) = (x2 + y −
11)2 + (x +y2 − 7)2. The example proceeds as follows.

1. First we define the function to optimize: it must return a scalar and have among its argu-
ments the vector to optimize. In this particular case that is its only argument, but there
could have been other ones if necessary. Since in this case we are solving for a minimum
our definition returns the negative of the Himmelblau function proper.

2. We next set max_verbose to 1. This is another example of the usage of the set command;
its meaning is “let me see how the iterations go” and it defaults to 0. By using the set
command with appropriate parameters, you control several features of the optimization
process, such as numerical tolerances, visualization of the iterations, and so forth.

3. Define θ1 = [0,0] as the starting point.

4. Invoke the BFGSmax function; this will seek the maximum via the BFGS technique. Its base
syntax is BFGSmax(arg1, arg2), where arg1 is the vector contining the optimization
variable and arg2 is a string containing the invocation of the function to maximize. BFGS
will try several values of θ1 until the maximum is reached. On successful completion, the
vector theta1 will contain the final point. (Note: there’s much more to this. For details,
be sure to read the Gretl User’s Guideand the Gretl Command Reference.)

5. Then we tackle the same problem but with a different starting point and a different opti-
mization technique. We start from θ2 = [0,−1] and use Newton–Raphson instead of BFGS,
calling the NRmax() function instead if BFGSmax(). The syntax, however, is the same.

6. Finally we print the results.

Table 7.1 on page 26 contains a selected portion of the output. Note that the second run
converges to a different local optimum than the first one. This is a consequence of having
initialized the algorithm with a different starting point. In this example, numerical derivatives
were used, but you can supply analytically computed derivatives to both methods if you have a
hansl function for them; see the Gretl User’s Guide for more detail.

The optimization methods hansl puts at your disposal are:

• BFGS, via the BFGSmax() function. This is in most cases the best compromise between
performance and robustness. It assumes that the function to maximize is differentiable
and will try to approximate its curvature by clever use of the change in the gradient be-
tween iterations. You can supply it with an analytically-computed gradient for speed and
accuracy, but if you don’t, the first derivatives will be computed numerically.

• Newton–Raphson, via the NRmax() function. Actually, the name is misleading. It should
be called something like “curvature-based”, since it relies on the iterations

xi+1 = −λiC(xi)−1g(xi)

where g(x) is the gradient and C(xi) is some measure of curvature of the function to
optimize; if C(x) is the Hessian matrix, you get Newton–Raphson. Again, you can code
your own functions for g(·) and C(·), but if you don’t then numerical approximations
to the gradient and the Hessian will be used, respectively. Other popular optimization
methods (such as BHHH and the scoring algorithm) can be implemented by supplying to
NRmax() the appropriate curvature matrix C(·). This method is very efficient when it
works, but is rather fragile: for example, if C(xi) happens to be non-negative definite at
some iteration convergence may become problematic.
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• Derivative-free methods: the only method that hansl offers presently is simulated anneal-
ing, via the simann() function, but an implementiation of the Nelder–Mead algorithm
(also known as the “amoeba” method) should be just a matter of time. These methods
work even when the function to maximize has some form of disconinuity or is not every-
where differentiable; however, they may be very slow and CPU-intensive.

7.2 Numerical differentiation

For numerical differentiation we have fdjac. For example:

set echo off
set messages off

function scalar beta(scalar x, scalar a, scalar b)
return x^(a-1) * (1-x)^(b-1)

end function

function scalar ad_beta(scalar x, scalar a, scalar b)
scalar g = beta(x, a-1, b-1)
f1 = (a-1) * (1-x)
f2 = (b-1) * x
return (f1 - f2) * g

end function

function scalar nd_beta(scalar x, scalar a, scalar b)
matrix mx = {x}
return fdjac(mx, beta(mx, a, b))

end function

a = 3.5
b = 2.5

loop for (x=0; x<=1; x+=0.1)
printf "x = %3.1f; beta(x) = %7.5f, ", x, beta(x, a, b)
A = ad_beta(x, a, b)
N = nd_beta(x, a, b)
printf "analytical der. = %8.5f, numerical der. = %8.5f\n", A, N

endloop

returns

x = 0.0; beta(x) = 0.00000, analytical der. = 0.00000, numerical der. = 0.00000
x = 0.1; beta(x) = 0.00270, analytical der. = 0.06300, numerical der. = 0.06300
x = 0.2; beta(x) = 0.01280, analytical der. = 0.13600, numerical der. = 0.13600
x = 0.3; beta(x) = 0.02887, analytical der. = 0.17872, numerical der. = 0.17872
x = 0.4; beta(x) = 0.04703, analytical der. = 0.17636, numerical der. = 0.17636
x = 0.5; beta(x) = 0.06250, analytical der. = 0.12500, numerical der. = 0.12500
x = 0.6; beta(x) = 0.07055, analytical der. = 0.02939, numerical der. = 0.02939
x = 0.7; beta(x) = 0.06736, analytical der. = -0.09623, numerical der. = -0.09623
x = 0.8; beta(x) = 0.05120, analytical der. = -0.22400, numerical der. = -0.22400
x = 0.9; beta(x) = 0.02430, analytical der. = -0.29700, numerical der. = -0.29700
x = 1.0; beta(x) = 0.00000, analytical der. = -0.00000, numerical der. = NA

Details on the algorithm used can be found in the Gretl Command Reference. Suffice it to
say here that you have a fdjac_quality setting that goes from 0 to 2. The default value
is to 0, which gives you forward-difference approximation: this is the fastest algorithm, but
sometimes may not be precise enough. The value of 1 gives you bilateral difference, while 2
uses Richardson extrapolation. As you go up, you gain in accuracy, but the method becomes
considerably more CPU-intensive.
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? matrix theta1 = { 0, 0 }
Replaced matrix theta1
? y1 = BFGSmax(theta1, "Himmelblau(11, theta1)")
Iteration 1: Criterion = -170.000000000
Parameters: 0.0000 0.0000
Gradients: 14.000 22.000 (norm 0.00e+00)

Iteration 2: Criterion = -128.264504038 (steplength = 0.04)
Parameters: 0.56000 0.88000
Gradients: 33.298 39.556 (norm 5.17e+00)

...

--- FINAL VALUES:
Criterion = -1.83015730011e-28 (steplength = 0.0016)
Parameters: 3.0000 2.0000
Gradients: 1.7231e-13 -3.7481e-13 (norm 7.96e-07)

Function evaluations: 39
Evaluations of gradient: 16
Replaced scalar y1 = -1.83016e-28
? matrix theta2 = { 0, -1 }
Replaced matrix theta2
? y2 = NRmax(theta2, "Himmelblau(11, theta2)")
Iteration 1: Criterion = -179.999876556 (steplength = 1)
Parameters: 1.0287e-05 -1.0000
Gradients: 12.000 2.8422e-06 (norm 7.95e-03)

Iteration 2: Criterion = -175.440691085 (steplength = 1)
Parameters: 0.25534 -1.0000
Gradients: 12.000 4.5475e-05 (norm 1.24e+00)

...

--- FINAL VALUES:
Criterion = -3.77420797114e-22 (steplength = 1)
Parameters: 3.5844 -1.8481
Gradients: -2.6649e-10 2.9536e-11 (norm 2.25e-05)

Gradient within tolerance (1e-07)
Replaced scalar y2 = -1.05814e-07
? print y1 y2 theta1 theta2

y1 = -1.8301573e-28

y2 = -1.0581385e-07

theta1 (1 x 2)

3 2

theta2 (1 x 2)

3.5844 -1.8481

Table 7.1: Output from maximization
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Control flow

The primary means for controlling the flow of execution in a hansl script are the if statement
(conditional execution), the loop statement (repeated execution), the catch modifier (which
enables the trapping of errors that would otherwise halt execution), and the quit command
(which forces termination).

8.1 The if statement

Conditional execution in hansl uses the if keyword. Its fullest usage is as follows

if <condition>
...

elif <condition>
...

else
...

endif

Points to note:

• The <condition> can be any expression that evaluates to a scalar: 0 is interpreted as
“false”, non-zero is interpreted as “true”; NA generates an error.

• Following if, “then” is implicit; there is no then keyword as found in, e.g., Pascal or Basic.

• The elif and else clauses are optional: the minimal form is just if . . . endif.

• Conditional blocks of this sort can be nested up to a maximum of depth of 1024.

Example:

scalar x = 15

# --- simple if ----------------------------------
if x >= 100

printf "%g is more than two digits long\n", x
endif

# --- if with else -------------------------------
if x >= 0

printf "%g is non-negative\n", x
else

printf "%g is negative\n", x
endif

# --- multiple branches --------------------------
if missing(x)

printf "%g is missing\n", x
elif x < 0

printf "%g is negative\n", x
elif floor(x) == x

printf "%g is an integer\n", x
else

27
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printf "%g is a positive number with a fractional part\n", x
endif

Note, from the example above, that the elif keyword can be repeated, making hansl’s if
statement a multi-way branch statement. There is no separate switch or case statement in
hansl. With one or more elifs, hansl will execute the first one for which the logical condition
is satisfied and then jump to endif.

+ Stata users, beware: hansl’s if statement is fundamentally different from Stata’s if option: the latter
selects a subsample of observations for some action, while the former is used to decide if a group of
statements should be executed or not; hansl’s if is what Stata calls “branching if”.

The ternary query operator

Besides use of if, the ternary query operator, ?:, can be used to perform conditional assign-
ment on a more “micro” level. This has the form

result = <condition> ? <true-value> : <false-value>

If <condition> evaluates as true (non-zero) then <true-value> is assigned to result, other-
wise result will contain <false-value>.1 This is obviously more compact than if . . . else
. . . endif. The following example replicates the abs function by hand:

scalar ax = x>=0 ? x : -x

Of course, in the above case it would have been much simpler to just write ax = abs(x).
Consider, however, the following case, which exploits the fact that the ternary operator can be
nested:

scalar days = (m==2) ? 28 : maxr(m.={4,6,9,11}) ? 30 : 31

This example deserves a few comments. We want to compute the number of days in a month,
coded in the variable m. The value we assign to the scalar days comes from the following
pathway.

1. First we check if the month is February (m==2); if so, we set days to 28 and we’re done.2

2. Otherwise, we compute a matrix of zeros and ones via the operation m.={4,6,9,11} (note
the use of the “dot” operator to perform an element-by element comparison—see section
4.2); if m equals any of the elements in the vector, the corresponding element of the result
will be 1, and 0 otherwise;

3. The maxr function gives the maximum of this vector, so we’re checking whether m is any
one of the four values corresponding to 30-day months.

4. Since the above evaluates to a scalar, we put the right value into days.

The ternary operator is more flexible than the ordinary if statement. With if, the <condition>
to be evaluated must always come down to a scalar, but the query operator just requires that
the condition is of “suitable” type in light of the types of the operands. So, for example, suppose
you have a square matrix A and you want to switch the sign of the negative elements of A on
and above its diagonal. You could use a loop,3 and write a piece of code such as

matrix A = mnormal(4,4)
matrix B = A

1Some readers may find it helpful to note that the conditional assignment operator works in exactly the same way
as the =IF() function in spreadsheets.

2OK, we’re ignoring leap years here.
3The loop keyword is explained in detail in the next section.
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loop r = 1 .. rows(A)
loop c = r .. cols(A)

if A[r,c] < 0
B[r,c] = -A[r,c]

endif
endloop

endloop

By using the ternary operator, you can achieve the same effect via a considerably shorter (and
faster) construct:

matrix A = mnormal(4,4)
matrix B = upper(A.<0) ? -A : A

+ At this point some readers may be thinking “Well, this may be as cool as you want, but it’s way too
complicated for me; I’ll just use the traditional if”. Of course, there’s nothing wrong with that, but
in some cases the ternary assignment operator can lead to substantially faster code, and it becomes
surprisingly natural when one gets used to it.

8.2 Loops

The basic hansl command for looping is (doh!) loop, and takes the form

loop <control-expression> <options>
...

endloop

In other words, the pair of statements loop and endloop enclose the statements to repeat. Of
course, loops can be nested. Several variants of the <control-expression> for a loop are
supported, as follows:

1. unconditional loop

2. while loop

3. index loop

4. foreach loop

5. for loop.

These variants are briefly described below.

Unconditional loop

This is the simplest variant. It takes the form

loop <times>
...

endloop

where <times> is any expression that evaluates to a scalar, namely the required number of
iterations. This is only evaluated at the beginning of the loop, so the number of iterations
cannot be changed from within the loop itself. Example:

# triangular numbers
scalar n = 6
scalar count = 1
scalar x = 0
loop n
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scalar x += count
count++
print x

endloop

yields

x = 1.0000000
x = 3.0000000
x = 6.0000000
x = 10.000000
x = 15.000000
x = 21.000000

Note the usage of the increment (count++) and of the inflected assignment (x += count) oper-
ators.

Index loop

The unconditional loop is used quite rarely, as in most cases it is useful to have a counter
variable (count in the previous example). This is easily accomplished via the index loop, whose
syntax is

loop <counter>=<min>..<max>
...

endloop

The limits <min> and <max> must evaluate to scalars; they are automatically turned into integers
if they have a fractional part. The <counter> variable is started at <min> and incremented by
1 on each iteration until it equals <max>.

The counter is “read-only” inside the loop. You can access either its numerical value through
the scalar i or use the accessor $i, which will perform string substitution: inside the loop, the
hansl interpreter will substitute for the expression $i the string representation of the current
value of the index variable. An example should made this clearer: the following input

scalar a_1 = 57
scalar a_2 = 85
scalar a_3 = 13

loop i=1..3
print i a_$i

endloop

has for output

i = 1.0000000
a_1 = 57.000000
i = 2.0000000

a_2 = 85.000000
i = 3.0000000

a_3 = 13.000000

In the example above, at the first iteration the value of i is 1, so the interpreter expands the
expression a_$i to a_1, finds that a scalar by that name exists, and prints it. The same happens
through the rest of the iterations. If one of the automatically constructed identifiers had not
been defined, execution would have stopped with an error.

While loop

Here you have
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loop while <condition>
...

endloop

where <condition> should evaluate to a scalar, which is re-evaluated at each iteration. Looping
stops as soon as <condition> becomes false (0). If <condition> becomes NA, an error is
flagged and execution stops. By default, while loops cannot exceed 100,000 iterations. This
is intended as a safeguard against potentially infinite loops. This setting can be overridden if
necessary by setting the loop_maxiter state variable to a different value.

Foreach loop

In this case the syntax is

loop foreach <counter> <catalogue>
...

endloop

where <catalogue> can be either a collection of space-separated strings, or a variable of type
list (see section 11.2). The counter variable automatically takes on the numerical values 1, 2,
3, and so on as execution proceeds, but its string value (accessed by prepending a dollar sign)
shadows the names of the series in the list or the space-separated strings; this sort of loop is
designed for string substitution.

Here is an example in which the <catalogue> is a collection of names of functions that return
a scalar value when given a scalar argument.

scalar x = 1
loop foreach f sqrt exp ln

scalar y = $f(x)
print y

endloop

This will produce

y = 1.0000000
y = 2.7182818
y = 0.0000000

For loop

The final form of loop control emulates the for statement in the C programming language. The
syntax is loop for, followed by three component expressions, separated by semicolons and
surrounded by parentheses, that is

loop for (<init>; <cont>; <modifier>)
...

endloop

The three components are as follows:

1. Initialization (<init>): this must be an assignment statement, evaluated at the start of the
loop.

2. Continuation condition (<cont>): this is evaluated at the top of each iteration (including
the first). If the expression evaluates as true (non-zero), iteration continues, otherwise it
stops.

3. Modifier (<modifier>): an expression which modifies the value of some variable. This is
evaluated prior to checking the continuation condition, on each iteration after the first.
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Here’s an example, in which we find the square root of a number by successive approximations:

# find the square root of x iteratively via Newton’s method
scalar x = 256
d = 1
loop for (y=(x+1)/2; abs(d) > 1.0e-7; y -= d/(2*y))

d = y*y - x
printf "y = %15.10f, d = %g\n", y, d

endloop

printf "sqrt(%g) = %g\n", x, y

Running the example gives

y = 128.5000000000, d = 16256.3
y = 65.2461089494, d = 4001.05
y = 34.5848572866, d = 940.112
y = 20.9934703720, d = 184.726
y = 16.5938690915, d = 19.3565
y = 16.0106268314, d = 0.340172
y = 16.0000035267, d = 0.000112855
y = 16.0000000000, d = 1.23919e-11

Number of iterations: 8

sqrt(256) = 16

Be aware of the limited precision of floating-point arithmetic. For example, the code snippet
below will iterate forever on most platforms because x will never equal exactly 0.01, even though
it might seem that it should.

loop for (x=1; x!=0.01; x=x*0.1)
printf "x = .18g\n", x

endloop

However, if you replace the condition x!=0.01 with x>=0.01, the code will run as (probably)
intended.

Loop options

Two options can be given to the loop statement. One is --verbose. This has simply the effect
of printing extra output to trace progress of the loop; it has no other effect and the semantics
of the loop contents remain unchanged.

The --progressive option is mostly used as a quick and efficient way to set up simulation
studies. When this option is given, a few commands (notably print and store) are given a
special, ad hoc meaning. Please refer to the Gretl User’s Guide for more information.

Breaking out of loops

The break command makes it possible to break out of a loop if necessary.4 Note that if you nest
loops, break in the innermost loop will interrupt that loop only and not the outer ones. Here is
an example in which we use the while variant of the loop statement to perform calculation of
the square root in a manner similar to the example above, using break to jump out of the loop
when the job is done.

scalar x = 256
scalar y = 1
loop while 1

4Hansl does not provide any equivalent to the C continue statement.
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d = y*y - x
if abs(d) < 1.0e-7

break
else

y -= d/(2*y)
printf "y = %15.10f, d = %g\n", y, d

endif
endloop

printf "sqrt(%g) = %g\n", x, y

8.3 The catch modifier

Hansl offers a rudimentary form of exception handling via the catch keyword. This is not a
command in its own right but can be used as a prefix to most regular commands: the effect is
to prevent termination of a script if an error occurs in executing the command. If an error does
occur, this is registered in an internal error code which can be accessed as $error (a zero value
indicating success). The value of $error should always be checked immediately after using
catch, and appropriate action taken if the command failed. Here is a simple example:

matrix a = floor(2*muniform(2,2))
catch ai = inv(a)
scalar err = $error
if err

printf "The matrix\n%6.0f\nis singular!\n", a
else

print ai
endif

Note that the catch keyword cannot be used before if, elif or endif. In addition, it should
not be used on calls to user-defined functions; it is intended for use only with gretl commands
and calls to “built-in” functions or operators. Suppose you’re writing a function package which
includes some subsidiary functionality which may fail under certain conditions, and you want
to prevent such failure from aborting execution. In that case you should use catch within the
particular function in question, and if an error condition is detected, signal this to the caller by
returning a suitable “invalid” value—say, NA (for a function that returns a scalar) or an empty
matrix. For example:

function scalar may_fail (matrix *m)
catch scalar x = ... # call to built-in procedure
if $error
x = NA

endif
return x

end function

function scalar caller (...)
matrix m = ... # whatever
scalar x = may_fail(&m)
if na(x)
print "Couldn’t calculate x"

else
printf "Calculated x = %g\n", x

endif
end function

What you should not do here is apply catch to may_fail()

function scalar caller (...)
matrix m = ... # whatever
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catch scalar x = may_fail(&m) # No, don’t do this!
...

end function

as this is likely to leave gretl in a confused state.

8.4 The quit statement

When the quit statement is encountered in a hansl script, execution stops. If the command-line
program gretlcli is running in batch mode, control returns to the operating system; if gretl is
running in interactive mode, gretl will wait for interactive input.

The quit command is rarely used in scripts since execution automatically stops when script
input is exhausted, but it could be used in conjunction with catch. A script author could
arrange matters so that on encountering a certain error condition an appropriate message is
printed and the script is halted. Another use for quit is in program development: if you want
to inspect the output of an initial portion of a complex script, the most convenient solution
may to insert a temporary “quit” at a suitable point.
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User-written functions

Hansl natively provides a reasonably wide array of pre-defined functions for manipulating vari-
ables of all kinds; the previous chapters contain several examples. However, it is also possible
to extend hansl’s native capabilities by defining additional functions.

Here’s what a user-defined function looks like:

function type funcname(parameters)
function body

end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. type, which states the type of value returned by the function, if any. This must be one of
void (if the function does not return anything), scalar, series, matrix, list, string,
bundle, or one of the array types, that is bundles, lists, matrices and strings;

3. funcname, the unique identifier for the function. Function names have a maximum length
of 31 characters; they must start with a letter and can contain only letters, numerals and
the underscore character. They cannot coincide with the names of native commands or
functions.

4. The function’s parameters, in the form of a comma-separated list enclosed in parenthe-
ses. Note: parameters are the only way hansl function can receive anything from “the
outside”. In hansl there are no global variables.

Function parameters can be of any of the types shown below.

Type Description

bool scalar variable acting as a Boolean switch

int scalar variable acting as an integer

scalar scalar variable

series data series (see section 11.1)

list named list of series (see section 11.2)

matrix matrix or vector

string string variable or string literal

bundle all-purpose container

matrices array of matrices

bundles array of bundles

strings array of strings

Each element in the listing of parameter must include two terms: a type specifier, and the name
by which the parameter shall be known within the function.

The function body contains (almost) arbitrary hansl code, which should compute the return
value, that is the value the function is supposed to yield. Any variable declared inside the
function is local, so it will cease to exist when the function ends.

35
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The return command is used to stop execution of the code inside the function and deliver its
result to the calling code. This typically happens at the end of the function body, but doesn’t
have to. The function definition must end with the expression end function, on a line of its
own.

+ Beware: unlike some other languages (e.g. Matlab or GAUSS), you cannot directly return multiple out-
puts from a function. However, you can return a multiple-item object, such as an array for homogenous
returns or a bundle for heterogenous items, and stuff it with as many objects as you want.

In order to get a feel for how functions work in practice, here’s a simple example:

function scalar quasi_log (scalar x)
/* popular approximation to the natural logarithm
via Padé polynomials

*/
if x < 0

scalar ret = NA
else

scalar ret = 2*(x-1)/(x+1)
endif
return ret

end function

loop for (x=0.5; x<2; x+=0.1)
printf "x = %4.2f; ln(x) = %g, approx = %g\n", x, ln(x), quasi_log(x)

endloop

The code above computes the rational function

f(x) = 2 · x − 1
x + 1

,

which provides a decent approximation to the natural logarithm in the neighborhood of 1. Some
comments on the code:

1. Since the function is meant to return a scalar, we put the keyword scalar after the intial
function.

2. In this case the parameter list has only one element: it is named x and is specified to be a
scalar.

3. On the next line the function definition begins; the body includes a comment and an if
block.

4. The function ends by returning the computed value, ret.

5. The lines below the function definition give a simple example of usage. Note that in the
printf command, the two functions ln() and quasi_log() are indistinguishable from a
purely syntactic viewpoint, although the former is native and the latter is user-defined.

In ambitious uses of hansl you may end up writing several functions, some of which may be
quite long. In order to avoid cluttering your script with function definitions, hansl provides the
include command: you can put your function definitions in a separate file (or set of files) and
read them in as needed. For example, suppose you saved the definition of quasi_log() in a
separate file called quasilog_def.inp: the code above could then be written more compactly
as

include quasilog_def.inp

loop for (x=0.5; x<2; x+=0.1)
printf "x = %4.2f; ln(x) = %g, approx = %g\n", x, ln(x), quasi_log(x)

endloop

Moreover, include commands can be nested.
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9.1 Parameter passing and return values

In hansl, parameters are by default passed by value, so what is used inside the function is a
copy of the original argument. You may modify it, but you’ll be just modifying the copy. The
following example should make this point clear:

function void f(scalar x)
x = x*2
print x

end function

scalar x = 3
f(x)
print x

Running the above code yields

x = 6.0000000
x = 3.0000000

The first print statement is executed inside the function, and the displayed value is 6 because
the input x is doubled; however, what really gets doubled is simply a copy of the original x:
this is demonstrated by the second print statement. If you want a function to modify its
arguments, you must use pointers.

It must be said that copying the contents of the incoming parameter to a local version may
have a sizeable impact on computational speed when the object is large (such as a 1000 × 1000
matrix). In order to avoid this, you may prepend the const modifier to the parameter type to
alert gretl that that object is not going be modified inside the function, so the computational
cost of storing an extra copy may be skipped. Consult the the Gretl User’s Guide for further
details.

Pointers

Each of the type-specifiers, with the exception of list, may be modified by prepending an
asterisk to the associated parameter name, as in

function scalar myfunc (matrix *y)

This indicates that the required argument is not a plain matrix but rather a pointer-to-matrix,
or in other words the memory address at which the variable is stored.

This can seem a bit mysterious to people unfamiliar with the C programming language, so allow
us to explain how pointers work by analogy. Suppose you set up a barber shop. Ideally, your
customers would walk into your shop, sit on a chair and have their hair trimmed or their beard
shaved. However, local regulations forbid you to modify anything coming in through your shop
door. Of course, you wouldn’t do much business if people must leave your shop with their hair
untouched. Nevertheless, you have a simple way to get around this limitation: your customers
can come to your shop, tell you their home address and walk out. Then, nobody stops you from
going to their place and exercising your fine profession. You’re OK with the law, because no
modification of anything took place inside your shop.

While our imaginary restriction on the barber seems arbitrary, the analogous restriction in a
programming context is not: it prevents functions from having unpredictable side effects. (You
might be upset if it turned out that your person was modified after visiting the grocery store!)

In hansl (unlike C) you don’t have to take any special care within the function to distinguish the
variable from its address,1 you just use the variable’s name. In order to supply the address of a
variable when you invoke the function, you use the ampersand (&) operator.

An example should make things clearer. The following code

1In C, this would be called dereferencing the pointer. The distinction is not required in hansl because there is no
equivalent to operating on the supplied address itself, as in C.
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function void swap(scalar *a, scalar *b)
scalar tmp = a
a = b
b = tmp

end function

scalar x = 0
scalar y = 1000000
swap(&x, &y)
print x y

gives the output

x = 1000000.0
y = 0.0000000

So x and y have in fact been swapped. How?

First you have the function definition, in which the arguments are pointers to scalars. Inside
the function body, the distinction is moot, as a is taken to mean “the scalar that you’ll find at
the address given by the first argument” (and likewise for b). The rest of the function simply
swaps a and b by means of a local temporary variable.

Outside the function, we first initialize the two scalars x to 0 and y to a big number. When the
function is called, it is given as arguments &a and &b, which hansl identifies as “the address of”
the two scalars a and b, respectively.

Writing a function with pointer arguments has two main consequences: first, as we just saw, it
makes it possible to modify the function arguments. Second, it avoids the computational cost of
having to allocate memory for a copy of the arguments and performing the copy operation; such
cost is proportional to the size of the argument. Hence, for matrix arguments, this is a nice way
to write faster functions, as producing a copy of a large matrix can be quite time-consuming.

Advanced parameter passing and optional arguments

The parameters to a hansl function can be also specified in more sophisticated ways than out-
lined above. There are three additional features worth mentioning:

1. A descriptive string can be attached to each parameter for GUI usage.

2. For some parameter types, there is a special syntax construct for ensuring that its value is
bounded; for example, you can stipulate a scalar argument to be positive, or constrained
within a pre-specified range.

3. Some of the arguments can be made optional.

A thorough discussion is too long to fit in this document, and the interested reader should refer
to the “User-defined functions” chapter of the the Gretl User’s Guide. Here we’ll just show you
a simple, and hopefully self-explanatory, example which combines features 2 and 3. Suppose
you have a function for producing smileys, defined as

function void smileys(int times[0::1], bool frown[0])
if frown

string s = ":-("
else

string s = ":-)"
endif

loop times
printf "%s ", s

endloop

printf "\n"
end function
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Then, running

smileys()
smileys(2, 1)
smileys(4)

produces

:-)
:-( :-(
:-) :-) :-) :-)

Embedding arguments in bundles

In certain cases, a function may be so complex that a large number of arguments is required.
Although there is no limit to the number of arguments a function can have, a complicated
function signature makes it somewhat unpleasant to use. Some programming languages (R,
for one) obviate this problem by using named arguments, so that you may call a function by
supplying only the few arguments you actually need, and leave the other ones to their default
value.

In Hansl, we don’t have named arguments, but a commonly employed technique achieves the
same result in a similar way: the idea is to embed arguments inside a bundle and use the bundle
syntax to handle its contents.2

For example, suppose that you want to write a function for extracting a substring from a string,
and optionally capitalizing it: you could start from something like

function string Sub(string s, scalar ini, scalar fin, bool capital)
string ret = s[ini:fin]
return capital ? toupper(ret) : ret

end function

so the call Sub("nowhere", 4, 7, 1) would produce the string HERE. A more sophisticated
version of the function may have default values, so that you could call the function in a sim-
plified form. By using the syntax shown in the previous subsection, one could set the defaults
as

function string Sub(string s, scalar ini[1], scalar fin[3], bool capital[FALSE])
string ret = s[ini:fin]
return capital ? toupper(ret) : ret

end function

and the call Sub("nowhere") would return the string now. However, if we wanted the string
to be capitalized, we would have to set the fourth parameter to 1, so in order to get NOW the
function would have to be called as Sub("nowhere", , ,1). If you have more than 5 or 6
parameters in the function signature, this quickly becomes awkward.

This issue can be resolved by wrapping arguments 2 to 4 inside a bundle, as in

function string Sub(string s, bundle opts)
string ret = s[opts.ini:opts.fin]
return opts.capital ? toupper(ret) : ret

end function

where the computation of the return string happens using the bundle contents,so you may call
the function as

bundle myopts = defbundle("ini", 1, "fin", 3, "capital", TRUE)
string out = Sub("nowhere", myopts)

2“Bundle” is the term used in Hansl to indicate associative arrays. For more details, see Section 6.1.
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Note that the two lines could be coealesced as

string out = Sub("nowhere", defbundle("ini", 1, "fin", 3,
"capital", TRUE))

but in some cases it may be convenient to keep the options bundle as a persistent object so that
successive calls to the function may take place with incremental changes.

Using this mechanism is useful because it lends itself quite naturally to handling default values
in an elegant way. Consider the code below:

function string Sub(string s, bundle opts_in[null])
bundle opts = defbundle("ini", 1, "fin", 3, "capital", 0)
if exists(opts_in)

opts = opts_in + opts
endif
string ret = s[opts.ini:opts.fin]
return opts.capital ? toupper(ret) : ret

end function

Let’s analyze the body of the function one line at a time:

1. the function signature contains only two arguments: the string to process and a bundle,
that has a default value of null and can therefore be omitted.

2. A bundle opts is defined with the defaults for the scalars ini and fin and for the Boolean
flag capital.

3. If a bundle was passed as the second argument, then the line

opts = opts_in + opts

replaces the keys in opts with those present in opts_in (with the + operator, the left-hand
bundle takes precedence). At this point, the bundle opts will contain a mixture of default
and user-set keys.

4. From here on, everything proceeds as above.

This means that a call to Sub("nowhere") would yield now, but if we wanted the output to be
capitalized, we could have called the function as

string out = Sub("nowhere", defbundle("capital", TRUE))

and the string out now contains NOW. The “incremental variations” idea for the options bundle
we mentioned above can be now exploited as in, for example, the following code:

bundle myopts = defbundle("capital", TRUE)
string out1 = Sub("nowhere", myopts)
myopts.fin = 2
string out2 = Sub("nowhere", myopts)

and execution will result in the string out1 containing NOW and out2 containing NO.

Moreover, from gretl version 2021a, the function defbundle accepts a “shorthand” syntax as
_() (see the documentation of defbundle in the Gretl Command Reference for more details).
This makes it possible to call a function written with this technique nearly as if it had named
arguments, as in

string out = Sub("nowhere", _(capital=1, fin=2))

Note that the arguments in _() can appear in any order.
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9.2 Recursion

Hansl functions can be recursive; what follows is the obligatory factorial example:

function scalar factorial(scalar n)
if (n<0) || (n>floor(n))

# filter out everything that isn’t a
# non-negative integer
return NA

elif n==0
return 1

else
return n * factorial(n-1)

endif
end function

loop i = 0 .. 6
printf "%d! = %d\n", i, factorial(i)

endloop

Note: this is fun, but in practice, you’ll be much better off using the pre-cooked gamma function
(or, better still, its logarithm).



Part II

With a dataset
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Chapter 10

What is a dataset?

A dataset is a memory area designed to hold the data you want to work on, if any. It may
be thought of a big global variable, containing a (possibly huge) matrix of data and a hefty
collection of metadata.

R users may think that a dataset is similar to what you get when you attach a data frame in R.
Not really: in hansl, you cannot have more than one dataset open at the same time. That’s why
we talk about the dataset.

When a dataset is present in memory (that is, “open”), a number of objects become available
for your hansl script in a transparent and convenient way. Of course, the data themselves:
the columns of the dataset matrix are called series, which will be described in section 11.1;
sometimes, you will want to organize one or more series in a list (section 11.2). Additionally,
you have the possibility of using, as read-only global variables, some scalars or matrices, such
as the number of observations, the number of variables, the nature of your dataset (cross-
sectional, time series or panel), and so on. These are called accessors, and will be discussed in
section 10.5.

You can open a dataset by reading data from a disk file, via the open command, or by creating
one from scratch.

10.1 Creating a dataset from scratch

The primary commands in this context are nulldata and setobs. For example:

set echo off
set messages off

set seed 443322 # initialize the random number generator
nulldata 240 # stipulate how long your series will be
setobs 12 1995:1 # define as monthly dataset, starting Jan 1995

For more details see the Gretl User’s Guide, and the Gretl Command Reference for the nulldata
and setobs commands. The only important thing to say at this point, however, is that you can
resize your dataset and/or change some of its characteristics, such as its periodicity, at nearly
any point inside your script if necessary.

Once your dataset is in place, you can start populating it with series, either by reading them
from files or by generating them via appropriate commands and functions.

10.2 Reading a dataset from a file

The primary commands here are open, append and join.

The open command is what you’ll want to use in most cases. It handles transparently a wide
variety of formats (native, CSV, spreadsheet, data files produced by other packages such as
Stata, Eviews, SPSS and SAS) and also takes care of setting up the dataset for you automatically.

open mydata.gdt # native format
open yourdata.dta # Stata format
open theirdata.xls # Excel format
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The open command can also be used to read stuff off the Internet, by using a URL instead of a
filename, as in

open http://someserver.com/somedata.csv

The Gretl User’s Guide describes the requirements on plain text data files of the “CSV” type for
direct importation by gretl. It also describes gretl’s native data formats (XML-based and binary).

The append and join commands can be used to add further series from file to a previously
opened dataset. The join command is extremely flexible and has a chapter to itself in the Gretl
User’s Guide.

10.3 Saving datasets

The store command is used to write the current dataset (or a subset) out to file. Besides
writing in gretl’s native formats, store can also be used to export data as CSV or in the format
of R. Series can be written out as matrices using the mwrite function. If you have special
requirements that are not met by store or mwrite it is possible to use outfile plus printf
(see chapter 5) to gain full control over the way data are saved.

10.4 The smpl command

Once you have opened a dataset somehow, the smpl command allows you to discard observa-
tions selectively, so that your series will contain only the observations you want (automatically
changing the dimension of the dataset in the process). See chapter 4 in the Gretl User’s Guide
for further information.1

There are basically three variants to the smpl command:

1. Selecting a contiguous subset of observations: this will be mostly useful with time-series
datasets. For example:

smpl 4 122 # select observations for 4 to 122
smpl 1984:1 2008:4 # the so-called "Great Moderation" period
smpl 2008-01-01 ; # form January 1st, 2008 onwards

2. Selecting observations on the basis of some criterion: this is typically what you want with
cross-sectional datasets. Example:

smpl male == 1 --restrict # males only
smpl male == 1 && age < 30 --restrict # just the young guys
smpl employed --dummy # via a dummy variable

Note that, in this context, restrictions go “on top of” previous ones. In order to start from
scratch, you either reset the full sample via smpl full or use the --replace option along
with --restrict.

3. Restricting the active dataset to some observations so that a certain effect is achieved au-
tomatically: for example, drawing a random subsample, or ensuring that all rows that have
missing observations are automatically excluded. This is achieved via the --no-missing,
--contiguous, and --random options.

In the context of panel datasets, some extra qualifications have to be made; see the Gretl User’s
Guide.

10.5 Dataset accessors

Several characteristics of the current dataset can be determined by reference to built-in accessor
(“dollar”) variables. The main ones, which all return scalar values, are shown in Table 10.1.

1Users with a Stata background may find the hansl way of doing things a little disconcerting at first. In hansl, you
first restrict your sample through the smpl command, which applies until further notice, then you do what you have
to. There is no equivalent to Stata’s if clause to commands.
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Accessor Value returned

$datatype Coding for the type of dataset: 0 = no data; 1 = cross-sectional
(undated); 2 = time-series; 3 = panel

$nobs The number of observations in the current sample range

$nvars The number of series (including the constant)

$pd The data frequency (1 for cross-sectional, 4 for quarterly, and so
on)

$t1 1-based index of the first observation in the current sample

$t2 1-based index of the last observation in the current sample

Table 10.1: The principal dataset accessors

In addition there are a few more specialized accessors: $obsdate, $obsmajor, $obsminor,
$obsmicro and $unit. These are specific to time-series and/or panel data, and they all return
series. See the Gretl Command Reference for details.
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Series and lists

Scalars, matrices and strings can be used in a hansl script at any point; series and lists, on the
other hand, are inherently tied to a dataset and therefore can be used only when a dataset is
currently open.

11.1 The series type

Series are just what any applied economist would call “variables”, that is, repeated observations
of a given quantity; a dataset is an ordered array of series, complemented by additional infor-
mation, such as the nature of the data (time-series, cross-section or panel), descriptive labels
for the series and/or the observations, source information and so on. Series are the basic data
type on which gretl’s built-in estimation commands depend.

The series belonging to a dataset are named via standard hansl identifiers (strings of maximum
length 31 characters as described above). In the context of commands that take series as argu-
ments, series may be referenced either by name or by ID number, that is, the index of the series
within the dataset. Position 0 in a dataset is always taken by the automatic “variable” known as
const, which is just a column of 1s. The IDs of the actual data series can be displayed via the
varlist command. (But note that in function calls, as opposed to commands, series must be
referred to by name.) A detailed description of how a dataset works can be found in chapter 4
of the Gretl User’s Guide.

Some basic rules regarding series follow:

• If lngdp belongs to a time series or panel dataset, then the syntax lngdp(-1) yields its
first lag, and lngdp(+1) its first lead.

• To access individual elements of a series, you use square brackets enclosing

– the progressive (1-based) number of the observation you want, as in lngdp[15], or

– the corresponding date code in the case of time-series data, as in lngdp[2008:4] (for
the 4th quarter of 2008), or

– the corresponding observation marker string, if the dataset contains any, as in GDP["USA"].

The rules for assigning values to series are just the same as for other objects, so the following
examples should be self-explanatory:

series k = 3 # implicit conversion from scalar; a constant series
series x = normal() # pseudo-rv via a built-in function
series s = a/b # element-by-element operation on existing series

series movavg = 0.5*(x + x(-1)) # using lags
series y[2012:4] = x[2011:2] # using individual data points
series x2000 = 100*x/x[2000:1] # constructing an index

+ In hansl, you don’t have separate commands for creating series and modifying them. Other popular
packages make this distinction, but we still struggle to understand why this is supposed to be useful.

Converting series to or from matrices

The reason why hansl provides a specific series type, distinct from the matrix type, is historical.
However, is also a very convenient feature. Operations that are typically performed on series in
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applied work can be awkward to implement using “raw” matrices—for example, the computa-
tion of leads and lags, or regular and seasonal differences; the treatment of missing values; the
addition of descriptive labels, and so on.

Anyway, it is straightforward to convert data in either direction between the series and matrix
types.

• To turn series into matrices, you use the curly braces syntax, as in

matrix MACRO = {outputgap, unemp, infl}

where you can also use lists; the number of rows of the resulting matrix will depend on
your currently selected sample.

• To turn matrices into series, you can just use matrix columns, as in

series y = my_matrix[,4]

But note that this will work only if the number of rows in my_matrix matches the length
of the dataset (or the currently selected sample range).

Also note that the lincomb and filter functions are quite useful for creating and manipulating
series in complex ways without having to convert the data to matrix form (which could be
computationally costly with large datasets).

The ternary operator with series

Consider this assignment:

worker_income = employed ? income : 0

Here we assume that employed is a dummy series coding for employee status. Its value
will be tested for each observation in the current sample range and the value assigned to
worker_income at that observation will be determined accordingly. It is therefore equivalent
to the following much more verbose formulation (where $t1 and $t2 are accessors for the start
and end of the sample range):

series worker_income
loop i=$t1..$t2

if employed[i]
worker_income[i] = income[i]

else
worker_income[i] = 0

endif
endloop

11.2 The list type

In hansl parlance, a list is an array of integers, representing the ID numbers of a set (in a loose
sense of the word) of series. For this reason, the most common operations you perform on
lists are set operations such as addition or deletion of members, union, intersection and so on.
Unlike sets, however, hansl lists are ordered, so individual list members can be accessed via the
[] syntax, as in X[3].

There are several ways to assign values to a list. The most basic sort of expression that works
in this context is a space-separated list of series, given either by name or by ID number. For
example,

list xlist = 1 2 3 4
list reglist = income price

An empty list is obtained by using the keyword null, as in
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list W = null

or simply by bare declaration. Some more special forms (for example, using wildcards) are
described in the Gretl User’s Guide.

The main idea is to use lists to group, under one identifier, one or more series that logically
belong together somehow (for example, as explanatory variables in a model). So, for example,

list xlist = x1 x2 x3 x4
ols y 0 xlist

is an idiomatic way of specifying the OLS regression that could also be written as

ols y 0 x1 x2 x3 x4

Note that we used here the convention, mentioned in section 11.1, by which a series can be
identified by its ID number when used as an argument to a command, typing 0 instead of
const.

Lists can be concatenated, as in as in list L3 = L1 L2 (where L1 and L2 are names of existing
lists). This will not necessarily do what you want, however, since the resulting list may contain
duplicates. It’s more common to use the following set operations:

Operator Meaning

|| Union

&& Intersection

- Set difference

So for example, if L1 and L2 are existing lists, after running the following code snippet

list UL = L1 || L2
list IL = L1 && L2
list DL = L1 - L2

the list UL will contain all the members of L1, plus any members of L2 that are not already in
L1; IL will contain all the elements that are present in both L1 and L2 and DL will contain all
the elements of L1 that are not present in L2.

To append or prepend variables to an existing list, we can make use of the fact that a named
list stands in for a “longhand” list. For example, assuming that a list xlist is already defined
(possibly as null), we can do

list xlist = xlist 5 6 7
xlist = 9 10 xlist 11 12

Another option for appending terms to, or dropping terms from, an existing list is to use += or
-=, respectively, as in

xlist += cpi
zlist -= cpi

A nice example of the above is provided by a common idiom: you may see in hansl scripts
something like

list C -= const
list C = const C

which ensures that the series const is included (exactly once) in the list C, and comes first.
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Converting lists to or from matrices

The idea of converting from a list, as defined above, to a matrix may be taken in either of two
ways. You may want to turn a list into a matrix (vector) by filling the latter with the ID numbers
contained in the former, or rather to create a matrix whose columns contain the series to which
the ID numbers refer. Both interpretations are legitimate (and potentially useful in different
contexts) so hansl lets you go either way.

If you assign a list to a matrix, as in

list L = moo foo boo zoo
matrix A = L

the matrix A will contain the ID numbers of the four series as a row vector. This operation goes
both ways, so the statement

list C = seq(7,10)

is perfectly valid (provided, of course, that you have at least 10 series in the currently open
dataset).

If instead you want to create a data matrix from the series which belong to a given list, you have
to enclose the list name in curly brackets, as in

matrix X = {L}

The foreach loop variant with lists

Lists can be used as the “catalogue” in the foreach variant of the loop construct (see section
8.2). This is especially handy when you have to perform some operation on multiple series. For
example, the following syntax can be used to calculate and print the mean of each of several
series:

list X = age income experience
loop foreach i X

printf "mean($i) = %g\n", mean($i)
endloop
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Estimation methods

You can, of course, estimate econometric models via hansl without having a dataset (in the
sense in which we’re using that term here) in place—just as you might in Matlab, for instance.
You’ll need data, but these can be loaded in matrix form (see the mread function in the Gretl
Command Reference), or generated artificially via functions such as mnormal or muniform. You
can roll your own estimator using hansl’s linear algebra primitives, and you also have access to
more specialized functions such as mols (see section 4.2) and mrls (restricted least squares) if
you need them.

However, unless you need to use an estimation method which is not currently supported by
gretl, or have a strong desire to reinvent the wheel, you will probably want to make use of
the built-in estimation commands available in hansl. These commands are series-oriented and
therefore require a dataset. They fall into two main categories: “canned” procedures, and
generic tools that can be used to estimate a wide variety of models based on common principles.

12.1 Canned estimation procedures

“Canned” maybe doesn’t sound very appetizing but it’s the term that’s commonly used. Basi-
cally it means two things, neither of them in fact unappetizing.

• The user is presented with a fairly simple interface. A few inputs must be specified, and
perhaps a few options selected, then the heavy lifting is done within the gretl library. Full
results are printed (parameter estimates plus numerous auxiliary statistics).

• The algorithm is written in C, by experienced coders. It is therefore faster (possibly much
faster) than an implementation in an interpreted language such as hansl.

Most such procedures share the syntax

commandname parameters options

where parameters usually takes the form of a listing of series: the dependent variable followed
by the regressors.

The line-up of procedures can be crudely categorized as follows:

Linear, single equation: ols, tsls, ar1, mpols

Linear, multi-equation: system, var, vecm

Nonlinear, single equation: logit, probit, poisson, negbin, tobit, intreg,
logistic, duration

Panel: panel, dpanel

Miscellaneous: arima, garch, heckit, quantreg, lad, biprobit

Don’t let names deceive you: for example, the probit command can estimate ordered models,
random-effect panel probit models, . . . The hansl “house style” is to keep to a relatively small
number of command words and to distinguish variants within a class of estimators such as
Probit by means of options, or the character of the data supplied.

Simultaneous systems (SUR, FIML and so on) constitute the main exception to the syntax sum-
mary above; these require a system block—see the chapter on Multivariate models in the Gretl
User’s Guide.
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12.2 Generic estimation tools

Hansl offers three main toolkits for defining estimators beyond the canned selection. Here’s a
quick overview:

command estimator User’s Guide

nls nonlinear least squares chapter 20

mle maximum likelihood estimation chapter 21

gmm generalized method of moments chapter 22

Each of these commands takes the form of a block of statements (e.g. nls . . . end nls). The user
must supply a function to compute the fitted dependent variable (nls), the log-likelihood (mle),
or the GMM residuals (gmm). With nls and mle, analytical derivatives of the function in question
with respect to the parameters may (optionally) be supplied.

The most widely used of these tools is probably mle. Hansl offers several canned ML estimators,
but if you come across a model that you want to estimate via maximum likelihood and it is not
supported natively, all you have to do is write down the log-likelihood in hansl’s notation and
run it through the mle apparatus.

12.3 Post-estimation accessors

All of the methods mentioned above are commands, not functions; they therefore do not return
any values. However, after estimating a model—either using a canned procedure or one of
the toolkits—you can grab most of the quantities you might wish to have available for further
analysis via accessors.

Some such accessors are generic, and are available after using just about any estimator. Ex-
amples include $coeff and $stderr (to get the vectors of coefficients and standard errors,
respectively), $uhat and $yhat (residuals and fitted values), and $vcv (the covariance matrix
of the coefficients). Some, on the other hand, are specific to certain estimators. Examples here
include $jbeta (the cointegration matrix, following estimation of a VECM), $h (the estimated
conditional variance series following GARCH estimation), and $mnlprobs (the matrix of per-
outcome probabilities following multinomial logit estimation).

A full listing and description of accessors can be found in the Gretl Command Reference.

12.4 Formatting the results of estimation

The commands mentioned in this chapter produce by default quite verbose (and, hopefully,
nicely formatted) output. However, in some cases you may want to use built-in commands
as auxiliary steps in implementing an estimator that is not itself built in. In that context the
standard printed output may be inappropriate and you may want to take charge of presenting
the results yourself.

This can be accomplished quite easily. First, you can suppress the usual output by using the
--quiet option with built-in estimation commands.1 Second, you can use the modprint com-
mand to generate the desired output. As usual, see the Gretl Command Reference for details.

12.5 Named models

We said above that estimation commands in hansl don’t return anything. This should be quali-
fied in one respect: it is possible to use a special syntax to push a model onto a stack of named
models. Rather than the usual assignment symbol, the form “<-” is used for this purpose. This
is mostly intended for use in the gretl GUI but it can also be used in hansl scripting.

1For some commands, --quiet reduces but does not eliminate gretl’s usual output. In these cases you can give
the --silent option. Consult the Gretl Command Reference to determine which commands accept this option.
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Once a model is saved in this way, the accessors mentioned above can be used in a special way,
joined by a dot to the name of the target model. A little example follows. (Note that $ess
accesses the error sum of squares, or sum of squared residuals, for models estimated via least
squares.)

diff y x
ADL <- ols y const y(-1) x(0 to -1)
ECM <- ols d_y const d_x y(-1) x(-1)
# the following two values should be equal
ssr_a = ADL.$ess
ssr_e = ECM.$ess
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Chapter 13

Rules regarding white space

Programming languages differ in their rules regarding the use of white space in a program. Here
we set out the rules in hansl. The rules differ somewhat between commands on the one hand
and function calls plus assignment on the other.

13.1 White space in commands

Hansl commands are structured as follows: first comes a command word (e.g. ols, summary);
then come zero or more arguments (often the names of series); then come zero or more options
(some of which may take parameters). The relevant rules are:

1. The individual elements just mentioned must always be separated by at least one space,
and where one space is required you are free to insert as many as you like.

2. Whenever a parameter is supplied with an option flag, the parameter must be attached to
the flag with an equals sign, with no intervening space:

ols y 0 x --cluster=clustvar # correct
ols y 0 x --cluster =clustvar # broken!

13.2 Spaces in function calls and assignment

For the most part, white space in function calls and assignment is not significant; it can be
inserted or not at will. For example, in the following sets of statements each member is equally
acceptable syntactically (though some are ugly!):

# set 1
y = sqrt(x)
y=sqrt(x)
# set 2
c = cov(y1, y2)
c=cov(y1,y2)
c = cov(y1 , y2)

However, please note these exceptions:

1. When an assignment starts with a type keyword such as series or matrix, this must be
separated from what follows by at least one space, as in

series y = normal() # or: series y=normal()

2. In a function call, the opening parenthesis that marks the start of the argument list must
be attached to the name of the function without intervening space:

c = cov(y1, y2) # correct
c = cov (y1, y2) # broken!
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Operators

14.1 Precedence

Table 14.1 lists the operators available in gretl in order of decreasing precedence: the operators
on the first row have the highest precedence, those on the second row have the second highest,
and so on. Operators on any given row have equal precedence. Where successive operators
have the same precedence the order of evaluation is in general left to right. The exceptions are
exponentiation and matrix transpose-multiply. The expression a^b^c is equivalent to a^(b^c),
not (a^b)^c, and similarly A’B’C’ is equivalent to A’(B’(C’)).

Table 14.1: Operator precedence

() [] . {}

! ++ -- ^ ’

* / % \ **

+ - ~ |

> < >= <= ..

== !=

&&

||

?:

In addition to the basic forms shown in the Table, several operators also have a “dot form” (as
in “.+” which is read as “dot plus”). These are element-wise versions of the basic operators, for
use with matrices exclusively; they have the same precedence as their basic counterparts. The
available dot operators are as follows.

.^ .* ./ .+ .- .> .< .>= .<= .=

Each basic operator is shown once again in the following list along with a brief account of its
meaning. Apart from the first three sets of grouping symbols, all operators are binary except
where otherwise noted.

() Function call

[] Subscripting

. Bundle membership (see below)

{} Matrix definition

! Unary logical NOT

++ Increment (unary)

-- Decrement (unary)

^ Exponentiation

’ Matrix transpose (unary) or transpose-multiply (binary)

* Multiplication

/ Division, matrix “right division”

% Modulus
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\ Matrix “left division”

** Kronecker product

+ Addition

- Subtraction

~ Matrix horizontal concatenation

| Matrix vertical concatenation

> Boolean greater than

< Boolean less than

>= Greater than or equal

<= Less than or equal

.. Range from–to (in constructing lists)

== Boolean equality test

!= Boolean inequality test

&& Logical AND

|| Logical OR

?: Conditional expression

The interpretation of “.” as the bundle membership operator is confined to the case where
it is immediately preceded by the identifier for a bundle, and immediately followed by a valid
identifier (key).

Details on the use of the matrix-related operators (including the dot operators) can be found in
the chapter on matrices in the Gretl User’s Guide.

14.2 Assignment

The operators mentioned above are all intended for use on the right-hand side of an expression
which assigns a value to a variable (or which just computes and displays a value—see the eval
command). In addition we have the assignment operator itself, “=”. In effect this has the lowest
precedence of all: the entire right-hand side is evaluated before assignment takes place.

Besides plain “=” several “inflected” versions of assignment are available. These may be used
only when the left-hand side variable is already defined. The inflected assignment yields a value
that is a function of the prior value on the left and the computed value on the right. Such
operators are formed by prepending a regular operator symbol to the equals sign. For example,

y += x

The new value assigned to y by the statement above is the prior value of y plus x. The other
available inflected operators, which work in an exactly analogous fashion, are as follows.

-= *= /= %= ^= ~= |=

In addition, a special form of inflected assignment is provided for matrices. Say matrix M is
2 × 2. If you execute M = 5 this has the effect of replacing M with a 1 × 1 matrix with single
element 5. But if you do M .= 5 this assigns the value 5 to all elements of M without changing
its dimensions.

14.3 Increment and decrement

The unary operators ++ and -- follow their operand,1 which must be a variable of scalar type.
Their simplest use is in stand-alone expressions, such as

1The C programming language also supports prefix versions of ++ and --, which increment or decrement their
operand before yielding its value. Only the postfix form is supported by gretl.
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j++ # shorthand for j = j + 1
k-- # shorthand for k = k - 1

However, they can also be embedded in more complex expressions, in which case they first
yield the original value of the variable in question, then have the side-effect of incrementing or
decrementing the variable’s value. For example:

scalar i = 3
k = i++
matrix M = zeros(10, 1)
M[i++] = 1

After the second line, k has the value 3 and i has value 4. The last line assigns the value 1 to
element 4 of matrix M and sets i = 5.

Warning: as in the C programming language, the unary increment or decrement operator should
be not be applied to a variable in conjunction with regular reference to the same variable in
a single statement. This is because the order of evaluation is not guaranteed, giving rise to
ambiguity. Consider the following:

M[i++] = i # don’t do this!

This is supposed to assign the value of i to M[i], but is it the original or the incremented value?
This is not actually defined.



Chapter 15

Greek-letter identifiers

As mentioned in chapter 3, the sole exception to the requirement that hansl identifiers must be
plain ASCII is that they may take the form of a single Greek letter. Here are the details.

• This exception applies only to names of variables other than series; the names of series
must always be ASCII.

• The supported Greek characters are the 24 (unaccented) letters in the basic Greek alpha-
bet, minus omicron, which is indistinguishable from the Latin ‘o’.

• These letters may be used in lower or upper case (constituting distinct identifiers, as usual
in hansl), except for the several upper-case letters which are indistinguishable in the Latin
and Greek alphabets (‘A’, ‘B’, ‘E’, ‘K’, ‘M’, ‘N’, . . . ).

• The Greek letters must be encoded in UTF-8.

In gretl’s graphical interface (script editor and GUI “console”), the acceptable Greek letters can
be entered by typing a Latin letter while the Alt key is depressed. The mappings from Latin to
Greek are shown below: lower case first, then upper case.

Latin Greek Latin Greek

a α alpha n ν nu

b β beta p π pi

c χ chi q θ theta

d δ delta r ρ rho

e ε epsilon s σ sigma

f φ phi t τ tau

g γ gamma u υ upsilon

h η eta v ν nu

i ι iota w ω omega

j ψ psi x ξ xi

k κ kappa y υ upsilon

l λ lambda z ζ zeta

m µ mu

58
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Latin Greek

D ∆ Delta

F Φ Phi

G Γ Gamma

J Ψ Psi

L Λ Lambda

P Π Pi

Q Θ Theta

S Σ Sigma

U Υ Upsilon

W Ω Omega

X Ξ Xi

Y Υ Upsilon

A word of advice: it’s probably not a good idea to employ Greek-letter identifiers in hansl
scripts that you intend to share via the internet, since one cannot assume that text encodings
are preserved unchanged. This warning applies in particular if you, or any of the intended
recipients of your scripts, work on MS Windows, since Windows does not natively support UTF-
8, the mandatory encoding of such identifiers for use with gretl.
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